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ABSTRACT

A class of globally viscometric flows which has relevance to slow flows

occurring between two infinite parallel plates rotating with differing angular

velocities about a common axis, is studied..
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SIGNIFICANCE AND EXPLANATION

Viscometric flows are locally equivﬁlent to steady simple shear flows and
in such flows the behavior of a simple fluid can be completely characterized
by three scalar functions of a single variable, namely the shear. Most of the
faniliar‘tlows in the literature, namely Couette flow, Poigeuille flow, etc.,
belong to the above class. In this paper we investigate a class of
viscometric flows which has relevance to the flows occurring botwo‘n infinite
parallel plates rotating about a common axis with different angular

velocities.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ON A VISCOMBTRIC FLOW OF A SIMPLE FLUID

K. R. Rajagopal*

1. Introduction

In one of his several pioneering papers in the fifites, Rivlin (1]
studied the torsional flow between two parallel disks. He considered a

velocity field of the form:

us =Ygy, v=9Px and v = 0, (1)

u, v, and w being the velocities in the x, y, and =z directions,
respectively. The above motion is viscometric (cf. Pipkin (2])) and has
relevance to the low Reynolds number flow between rotating disks. The form

(1) corresponds to a flow in which each plane parallel to the plates is

rotating as though it were rigid, the angular velocity of these plates varying

linearly. However, such a lineaxr variation is by no means the only possible
one in the case of a simple fluid.

In this paper, 1 shall consider a generalization of (1) which is
applicable for the slow flow of a simple fluid between parallel plates
rotating with differing angular velocities about a common axis (see Pig. 1).
The assumed form for the velocity field falls into the category of pseuvdo-

plane motions which were studied by Berker [3]).

*Department of Mechanical Engineering, University of Pittaburgh, Pittsburgh,
PA 15261

Sponsored by the U. 8. Army under Constract No. DAAG29-80-C-0041.




We shall assume a flow fluid of the form

u=-Q(eg)y, v=Q0(z)x, w=0, (2)

where ((z) 1is an arbitrary function =z which needs to be determined from
the equations of motion for the specific fluid under consideration.

After a brief discussion of the basic definitions and notations that we
will need, in the next section, we proceed to show that a motion of the form
(2) is viscometric. We conclude with an example of a specific fluid model

wherein £(z) need not be linear.




2. Preliminaries

Let x denote the position of an element X in the reference state at
time t and let § denote the position of X at time 7t. The dependence of
E on x,t and T can be expressed as
£=x (x,T). (3)
The relative deformation gradient F (T) is then defined through
E (%) = gﬂdz X (X, (4)
The relative right Cauchy-Green tensor is defined through
(1) = FT (1R, (1) (s)
Le 1 S S
the velocity gradient tensor L(t) through
; 4
{ L(t) =<—F (t)L' . (6)

and the Rivlin-Ericksen tensors (cf. Rivlin and Ericksen (4]) through

MTEYE (7,
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A motion is said to be viscometric® (cf. Coleman (S)) if at that given L

material point, the right relative Cauchy-Green tensor can be expressed as

)
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st(t-.) = ‘1 - .A‘ + -2-~2 ] (8)

for all t and if relative to some orthonormal basis ’1' the Rivlin-
Ericksen tensors have the following matrix representation
0 0 «x 0 0 O
51 =10 0 0}, 52 =10 0 O ’ (9), (10)
K 0 0 0 0 2¢2

where «k 1is usually referred to as the "shear rate"

*We choose to use the above definition for a viscometric flow since we shall
find the need to employ the kinematical tensors A, and A, wused in the
above definition, later on. A flow is viscometric (cf. Coleman, Markovitz and
Woll [6]) it

E (t=T) = R(e=-T)(1-(t-T)H),

where R{t-t) |is orthogonal with R(0) = 1 and M is a tensor which has the
following matrix representation with ronpoct to a suitable axis

0 0 «x
o 0 0} .
«x 0 O




3. The Flow Pield

Consider the motion represented by (2), i.e.,

us= -Q(z)y,
v= {{z)x, and

w=0,

where u, v, and w denote the x, y, and =z components of the velocity,
respectively. The motion represented by (10) is isochoric. Iet us denote by

& the 3-tuple (£, n, ). Then (10) implies that

£ = -a)ml, (1,
n = Q()E), (1, |
t = 0, ('1)3
with
E(t) = x, n(t) =y, and [(t) = z. (12)

A straightforward computation yields

E(t) = x cos((Q(2))(t-1)] + y sin ((R(2))(t-1)], (13),
n(T) = -x sin {(R(2))(t-1)] + y cos (((2))(t-1)], (13),
() = 2 (13)4 ;

Thus, the relative deformation gradient has the following matrix

representation: :'

1
|
I
1
{
!
i
i
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cos[(R(2))(t-1)] sin((R(2))(t~1)] ~x(t=-1)R* (2)sin((R(2))(t-1)]

+y{t=-1)R* (g)cos(((=) ) (t-1)]

E (T) = . (14)

-sin((Q(2))(t=1)] cosl(Q(2))(t-T)] -x(t-1)Q°(2)cosl(R(2))(t-1)]

~y(t-1)2' (2)sin((R(z2) ) (t-1)]
0 0 1

Hence, the right relative Cauchy=-Green strain history takes the simple form

1 0 sy(8'(z))
S (t-s) = 0 1 -sx(2'(2)) (15)
2, 2 2
\y(R'(z))s  ~x(8'(2))s 1+1(8° (2) ) 8] “(x*+y®)

We now proceed to compute the Rivlin-Ericksen tensors An' First, it

follows from (8), the velocity gradient L 1is given by
0 -Q(z) -yQ'(2)
E = Q=) 0 (=) . {16)
0 0 0

Thus, the first two Rivlin-Ericksen tensors are given by

0 0 -y’ (z)

R, = 0 ) Q'(z) |, (17)
' (2) @' (s) 0




0 0 0
o o 21(ya'(x))%(@ ()3

We also provide the matrix representations of ;‘; and 51._2 which will be
useful later on.
(2912  -xy(8'(5))? 0
2 A -xy(ae)?  para? 0 , (19)
0 0 {(ya* (21 2o (0 (201%)
0 0o -2[9'(:)13y[x2+yzl
A, =0 o 210 ()1 3xtxy?) | . (20)
0 0 0

It is easy to verify that the Rivlin-Ericksen tensors 5‘ and 52 can

be expressed in the form (9) and (10) where the new basis e (i=1,2,3) is

6 §
related to the old cartesian basis N (4=1,2,3) through

- -R'(s (s
g, - B, B,

" ﬂ.‘!! ‘.‘ll
22" T« 22""¢ 24

2" 2
with

k= ((yte)? ¢ (@ m)2?,
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It then follows from equations (15), (17), (18) and the definition of a
viscometric flow that the motion (2) under consideration is indeed

viscometric. Purthermore, a aimple computation yields

A =0, ¥ nd>» 3.

?
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4., Discussion

It is easy to verify by virtue of (17)=-(20) that a velocity field of the

form (10) given by*

a.-2.) ., +Q
u(x,y,z) = "[_'2'",—1" z + (—1_—_2')]Y ’

: 02 - 01 : n + 9
vix,y,z) = [( ™ z + (

)]xv

w(z,y,z) = 0,

satisfies the equation of motion for the non inertial flow of the classical
linearly viscous fluid and the Rivliin-Ericksen fluids of second and third
grade**. In the case of the linearly viscous fluid the above solution is the
unigue solution to the "Stokes flow” problem. 1In the case of the incompressible
Rivlin-Ericksen fluids of the second and third grade, the above flow would be
the unique solution under certain conditions if the fluids are required to be

thermodynamically compatiblet*** (cf. Fosdick and Rajagopal [9]).

* This is Rivlin's (4] result extended to the case when both the top and
bottom plates are rotating. .

*¢ The stress constitutive equations for the linearly viscous fluid and the
incompressible Rivliin-Ericksen fluids of ucond and third grade are given by
(cf. Truesdell and Noll ([7]):

2"'P1‘|’ll£1,
2
T = -pl + WA, + GA, + @A,

T =Pl t MRy + OB, ¢ 0N BRL ¢ B 1A, ¢ AN+ By(erA]R, -
#¢% The fluid is said to be thermodynamically compatible if it meets the
Clausius-Duhem inequality in all its motions and if the specific Helmholts
free energy is a minimum when the fluid is at rest under isothermal
conditions. The uniqueness result is not a consequence of Tanner's therorem
{10] as the flow in question is not plane.




However, the flow (2) is by no means the only one possible in a general

simple fluid. We give below an example of a simple fluid which is properly
frame invariant 1nlwh1ch an infinity of solutions is possible for the above
problem. Of course, the fluid model may not be a realistic one. It should
however be noted that one could easily construct fluid models wherein the
stress is expressible as polynomials of the gradients of velocity and the
(n-i)th accelerations, the class of models studied by Rivlin [1], where non-
unique solutions for f(z) are possible.

Let us consider a fluid model whose Cauchy stress T is given by

Such a fluid model is definitely permissible under the class of simple fluids
(cf. Wineman and Pipkin [11]). A trivial computation, for the problem in

question, verifies that

1
——a,={0 0o o }.
(era})

It then follows that any smooth fi(z) which is such that it is Q' at the

top and 02 at the bottom would be permissible!

Acknowledgement: The author would like to thank Ms. K. Spear for useful
discussions.
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